Learn Sorbet in Y minutes

A whirlwind tour of statically-typed Ruby

Published Dec 3, 2020

We’ve been increasing our adoption of Sorbet at Gusto! As I’ve been trying to type more and more complex bits of Ruby, I’ve found it helpful to have a single page of examples that I can search through easily.

I like learning new programming languages with Learn X in Y minutes, so I tried to make this digestible in the same way.

If you use this, let me know what you think! I’m open to improving this to work for more people, and I’m also interested in learning what your value of Y is.

Updates:

  • 2020-12-12: Added examples for T::Enum methods
  • 2022-04-06: The Generics examples have gone stale, but I don’t write enough Ruby these days to fix them. I would gladly link to your better version if you make one! (Even better, stack it on this PR and get it merged into the real “Learn X in Y minutes” site.)

The easiest way to see this in action is on sorbet.run. Here’s a link for each section below:

If you don’t like reading code on blogs (I’m with you!), here’s the file.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
# Every file should have a "typed sigil" that tells Sorbet how strict to be
# during static type checking.
#
# Strictness levels (lax to strict):
#
# ignore: Sorbet won't even read the file.  This means its contents are not
# visible during type checking.  Avoid this.
#
# false: Sorbet will only report errors related to constant resolution.  This
# is the default if no sigil is included.
#
# true: Sorbet will report all static type errors.  This is the sweet spot of
# safety for effort.
#
# strict: Sorbet will require that all methods, constants, and instance
# variables have static types.
#
# strong: Sorbet will no longer allow anything to be T.untyped, even
# explicitly.  Almost nothing satisfies this.

# typed: true

# Include the runtime type-checking library.  This lets you write inline sigs
# and have them checked at runtime (instead of running Sorbet as RBI-only).
# These runtime checks happen even for files with `ignore` or `false` sigils.
require 'sorbet-runtime'

class BasicSigs
  # Bring in the type definition helpers.  You'll almost always need this.
  extend T::Sig

  # Sigs are defined with `sig` and a block.  Define the return value type with
  # `returns`.
  #
  # This method returns a value whose class is `String`.  These are the most
  # common types, and Sorbet calls them "class types".
  sig { returns(String) }
  def greet
    'Hello, World!'
  end

  # Define parameter value types with `params`.
  sig { params(n: Integer).returns(String) }
  def greet_repeat(n)
    (1..n).map { greet }.join("\n")
  end

  # Define keyword parameters the same way.
  sig { params(n: Integer, sep: String).returns(String) }
  def greet_repeat_2(n, sep: "\n")
    (1..n).map { greet }.join(sep)
  end

  # Notice that positional/keyword and required/optional make no difference
  # here.  They're all defined the same way in `params`.

  # For lots of parameters, it's nicer to use do..end and a multiline block
  # instead of curly braces.
  sig do
    params(
      str: String,
      num: Integer,
      sym: Symbol,
    ).returns(String)
  end
  def uhh(str:, num:, sym:)
    'What would you even do with these?'
  end

  # For a method whose return value is useless, use `void`.
  sig { params(name: String).void }
  def say_hello(name)
    puts "Hello, #{name}!"
  end

  # Splats! Also known as "rest parameters", "*args", "**kwargs", and others.
  #
  # Type the value that a _member_ of `args` or `kwargs` will have, not `args`
  # or `kwargs` itself.
  sig { params(args: Integer, kwargs: String).void }
  def no_op(*args, **kwargs)
    if kwargs[:op] == 'minus'
      args.each { |i| puts(i - 1) }
    else
      args.each { |i| puts(i + 1) }
    end
  end

  # Most initializers should be `void`.
  sig { params(name: String).void }
  def initialize(name:)
    # Instance variables must have annotated types to participate in static
    # type checking.

    # The value in `T.let` is checked statically and at runtime.
    @upname = T.let(name.upcase, String)

    # Sorbet can infer this one!
    @name = name
  end

  # Constants also need annotated types.
  SORBET = T.let('A delicious frozen treat', String)

  # Class variables too.
  @@the_answer = T.let(42, Integer)

  # Sorbet knows about the `attr_*` family.
  sig { returns(String) }
  attr_reader :upname

  sig { params(write_only: Integer).returns(Integer) }
  attr_writer :write_only

  # You say the reader part and Sorbet will say the writer part.
  sig { returns(String) }
  attr_accessor :name
end

module Debugging
  extend T::Sig

  # Sometimes it's helpful to know what type Sorbet has inferred for an
  # expression.  Use `T.reveal_type` to make type-checking show a special error
  # with that information.
  #
  # This is most useful if you have Sorbet integrated into your editor so you
  # can see the result as soon as you save the file.

  sig { params(obj: Object).returns(String) }
  def debug(obj)
    T.reveal_type(obj) # Revealed type: Object
    repr = obj.inspect

    # Reminder that Ruby methods can be called without arguments, so you can
    # save a couple characters!
    T.reveal_type repr # Revealed type: String

    "DEBUG: " + repr
  end
end

module StandardLibrary
  extend T::Sig
  # Sorbet provides some helpers for typing the Ruby standard library.

  # Use T::Boolean to catch both `true` and `false`.
  #
  # For the curious, this is equivalent to
  #     T.type_alias { T.any(TrueClass, FalseClass) }
  sig { params(str: String).returns(T::Boolean) }
  def confirmed?(str)
    str == 'yes'
  end

  # Reminder that the value `nil` is an instance of NilClass.
  sig { params(val: NilClass).void }
  def only_nil(val:); end

  # To avoid modifying standard library classes, Sorbet provides wrappers to
  # support common generics.
  #
  # Here's the full list:
  #   * T::Array
  #   * T::Enumerable
  #   * T::Enumerator
  #   * T::Hash
  #   * T::Range
  #   * T::Set
  sig { params(config: T::Hash[Symbol, String]).returns(T::Array[String]) }
  def merge_values(config)
    keyset = [:old_key, :new_key]
    config.each_pair.flat_map do |key, value|
      keyset.include?(key) ? value : 'sensible default'
    end
  end

  # Sometimes (usually dependency injection), a method will accept a reference
  # to a class rather than an instance of the class.  Use `T.class_of(Dep)` to
  # accept the `Dep` class itself (or something that inherits from it).
  class Dep; end

  sig { params(dep: T.class_of(Dep)).returns(Dep) }
  def dependency_injection(dep:)
    dep.new
  end

  # Blocks, procs, and lambdas, oh my!  All of these are typed with `T.proc`.
  #
  # Limitations:
  # 1. All parameters are assumed to be required positional parameters.
  # 2. The only runtime check is that the value is a `Proc`.  The argument
  #    types are only checked statically.
  sig do
    params(
      data: T::Array[String],
      blk: T.proc.params(val: String).returns(Integer),
    ).returns(Integer)
  end
  def count(data, &blk)
    data.sum(&blk)
  end

  sig { returns(Integer) }
  def count_usage
    count(["one", "two", "three"]) { |word| word.length + 1 }
  end

  # If the method takes an implicit block, Sorbet will infer `T.untyped` for
  # it.  Use the explicit block syntax if the types are important.
  sig { params(str: String).returns(T.untyped) }
  def implicit_block(str)
    yield(str)
  end

  # If you're writing a DSL and will execute the block in a different context,
  # use `bind`.
  sig { params(num: Integer, blk: T.proc.bind(Integer).void).void }
  def number_fun(num, &blk)
    num.instance_eval(&blk)
  end

  sig { params(num: Integer).void }
  def number_fun_usage(num)
    number_fun(10) { puts digits.join }
  end

  # If the block doesn't take any parameters, don't include `params`.
  sig { params(blk: T.proc.returns(Integer)).returns(Integer) }
  def doubled_block(&blk)
    2 * blk.call
  end
end

module Combinators
  extend T::Sig
  # These methods let you define new types from existing types.

  # Use `T.any` when you have a value that can be one of many types.  These are
  # sometimes known as "union types" or "sum types".
  sig { params(num: T.any(Integer, Float)).returns(Rational) }
  def hundreds(num)
    num.rationalize
  end

  # `T.nilable(Type)` is a convenient alias for `T.any(Type, NilClass)`.
  sig { params(val: T.nilable(String)).returns(Integer) }
  def strlen(val)
    val.nil? ? -1 : val.length
  end

  # Use `T.all` when you have a value that must satisfy multiple types.  These
  # are sometimes known as "intersection types".  They're most useful for
  # interfaces (described later), but can also describe helper modules.

  module Reversible
    extend T::Sig
    sig { void }
    def reverse
      # Pretend this is actually implemented
    end
  end

  module Sortable
    extend T::Sig
    sig { void }
    def sort
      # Pretend this is actually implemented
    end
  end

  class List
    include Reversible
    include Sortable
  end

  sig { params(list: T.all(Reversible, Sortable)).void }
  def rev_sort(list)
    # reverse from Reversible
    list.reverse
    # sort from Sortable
    list.sort
  end

  def rev_sort_usage
    rev_sort(List.new)
  end

  # Sometimes, actually spelling out the type every time becomes more confusing
  # than helpful.  Use type aliases to make them easier to work with.
  JSONLiteral = T.type_alias { T.any(Float, String, T::Boolean, NilClass) }

  sig { params(val: JSONLiteral).returns(String) }
  def stringify(val)
    val.to_s
  end
end

module DataClasses
  extend T::Sig
  # Use `T::Struct` to create a new class with type-checked fields.  It
  # combines the best parts of the standard Struct and OpenStruct, and then
  # adds static typing on top.
  #
  # Types constructed this way are sometimes known as "product types".

  class Matcher < T::Struct
    # Use `prop` to define a field with both a reader and writer.
    prop :count, Integer
    # Use `const` to only define the reader and skip the writer.
    const :pattern, Regexp
    # You can still set a default value with `default`.
    const :message, String, default: 'Found one!'

    # This is otherwise a normal class, so you can still define methods.

    # You'll still need to bring `sig` in if you want to use it though.
    extend T::Sig

    sig { void }
    def reset
      self.count = 0
    end
  end

  sig { params(text: String, matchers: T::Array[Matcher]).void }
  def awk(text, matchers)
    matchers.each(&:reset)
    text.lines.each do |line|
      matchers.each do |matcher|
        if matcher.pattern =~ line
          Kernel.puts matcher.message
          matcher.count += 1
        end
      end
    end
  end

  # Gotchas and limitations

  # 1. `const` fields are not truly immutable.  They don't have a writer
  #    method, but may be changed in other ways.
  class ChangeMe < T::Struct
    const :list, T::Array[Integer]
  end

  sig { params(change_me: ChangeMe).returns(T::Boolean) }
  def whoops!(change_me)
    change_me = ChangeMe.new(list: [1, 2, 3, 4])
    change_me.list.reverse!
    change_me.list == [4, 3, 2, 1]
  end

  # 2. `T::Struct` inherits its equality method from `BasicObject`, which uses
  #    identity equality (also known as "reference equality").
  class Coordinate < T::Struct
    const :row, Integer
    const :col, Integer
  end

  sig { returns(T::Boolean) }
  def never_equal!
    p1 = Coordinate.new(row: 1, col: 2)
    p2 = Coordinate.new(row: 1, col: 2)
    p1 != p2
  end

  # Define your own `#==` method to check the fields, if that's what you want.
  class Position < T::Struct
    extend T::Sig

    const :x, Integer
    const :y, Integer

    sig { params(other: Object).returns(T::Boolean) }
    def ==(other)
      # There's a real implementation here:
      # https://github.com/tricycle/sorbet-struct-comparable
      true
    end
  end

  # Use `T::Enum` to define a fixed set of values that are easy to reference.
  # This is especially useful when you don't care what the values _are_ as much
  # as you care that the set of possibilities is closed and static.
  class Crayon < T::Enum
    extend T::Sig

    # Start initialization with `enum`.
    enums do
      # Define each member with `new`.  Each of these is an instance of the
      # `Crayon` class.
      Red = new
      Orange = new
      Yellow = new
      Green = new
      Blue = new
      Violet = new
      Brown = new
      Black = new
      # The default value of the enum is its name in all-lowercase.  To change
      # that, pass a value to `new`.
      Gray90 = new('light-gray')
    end

    sig { returns(String) }
    def to_hex
      case self
      when Red   then '#ff0000'
      when Green then '#00ff00'
      # ...
      else            '#ffffff'
      end
    end
  end

  sig { params(crayon: Crayon, path: T::Array[Position]).void }
  def draw(crayon:, path:)
    path.each do |pos|
      Kernel.puts "(#{pos.x}, #{pos.y}) = " + crayon.to_hex
    end
  end

  # To get all the values in the enum, use `.values`.  For convenience there's
  # already a `#serialize` to get the enum string value.

  sig { returns(T::Array[String]) }
  def crayon_names
    Crayon.values.map(&:serialize)
  end

  # Use the "deserialize" family to go from string to enum value.

  sig { params(name: String).returns(T.nilable(Crayon)) }
  def crayon_from_name(name)
    if Crayon.has_serialized?(name)
      # If the value is not found, this will raise a `KeyError`.
      Crayon.deserialize(name)
    end

    # If the value is not found, this will return `nil`.
    Crayon.try_deserialize(name)
  end
end

module FlowSensitivity
  extend T::Sig
  # Sorbet understands Ruby's control flow constructs and uses that information
  # to get more accurate types when your code branches.

  # You'll see this most often when doing nil checks.
  sig { params(name: T.nilable(String)).returns(String) }
  def greet_loudly(name)
    if name.nil?
      'HELLO, YOU!'
    else
      # Sorbet knows that `name` must be a String here, so it's safe to call
      # `#upcase`.
      "HELLO, #{name.upcase}!"
    end
  end

  # The nils are a special case of refining `T.any`.
  sig { params(id: T.any(Integer, T::Array[Integer])).returns(T::Array[String]) }
  def database_lookup(id)
    if id.is_a?(Integer)
      # `ids` must be an Integer here.
      [id.to_s]
    else
      # `ids` must be a T::Array[Integer] here.
      id.map(&:to_s)
    end
  end

  # Sorbet recognizes these methods that narrow type definitions:
  # * is_a?
  # * kind_of?
  # * nil?
  # * Class#===
  # * Class#<
  # * block_given?
  #
  # Because they're so common, it also recognizes these Rails extensions:
  # * blank?
  # * present?
  #
  # Be careful to maintain Sorbet assumptions if you redefine these methods!

  # Have you've ever written this line of code?
  #
  #     raise StandardError, "Can't happen"
  #
  # Sorbet can help you prove that statically (this is known as
  # "exhaustiveness") with `T.absurd`.  It's extra cool when combined with
  # `T::Enum`!

  class Size < T::Enum
    extend T::Sig

    enums do
      Byte = new('B')
      Kibibyte = new('KiB')
      Mebibyte = new('MiB')
      # "640K ought to be enough for anybody"
    end

    sig { returns(Integer) }
    def bytes
      case self
        when Byte     then 1 <<  0
        when Kibibyte then 1 << 10
        when Mebibyte then 1 << 20
        else
          # Sorbet knows you've checked all the cases, so there's no possible
          # value that `self` could have here.
          #
          # But if you _do_ get here somehow, this will raise at runtime.
          T.absurd(self)

          # If you're missing a case, Sorbet can even tell you which one it is!
      end
    end
  end

  # We're gonna need `puts` and `raise` for this next part.
  include Kernel

  # Sorbet knows that no code can execute after a `raise` statement because it
  # "never returns".
  sig { params(num: T.nilable(Integer)).returns(Integer) }
  def decrement(num)
    raise ArgumentError, '¯\_(ツ)_/¯' unless num

    num - 1
  end

  # You can annotate your own error-raising methods with `T.noreturn`.
  class CustomError < StandardError; end
  sig { params(message: String).returns(T.noreturn) }
  def oh_no(message = 'A bad thing happened')
    puts message
    raise CustomError, message
  end

  # It also applies to infinite loops.
  sig { returns(T.noreturn) }
  def loading
    loop do
      %q(-\|/).each_char do |c|
        print "\r#{c} reticulating splines..."
        sleep 1
      end
    end
  end

  # You may run into a situation where Sorbet "loses" your type refinement.
  # Remember that almost everything you do in Ruby is a method call that could
  # return a different value next time you call it.  Sorbet doesn't assume that
  # any methods are pure (even those from `attr_reader` and `attr_accessor`).
  sig { returns(T.nilable(Integer)) }
  def answer
    rand > 0.5 ? 42 : nil
  end

  sig { void }
  def bad_typecheck
    if answer.nil?
      0
    else
      # But answer might return `nil` if we call it again!
      answer + 1
      # ^ Method + does not exist on NilClass component of T.nilable(Integer)
    end
  end

  sig { void }
  def good_typecheck
    ans = answer
    if ans.nil?
      0
    else
      # This time, Sorbet knows that `ans` is non-nil.
      ans + 1
    end
  end
end

module InheritancePatterns
  extend T::Sig

  # If you have a method that always returns the type of its receiver, use
  # `T.self_type`.  This is common in fluent interfaces and DSLs.
  #
  # Warning: This feature is still experimental!
  class Logging
    extend T::Sig

    sig { returns(T.self_type) }
    def log
      pp self
      self
    end
  end

  class Data < Logging
    extend T::Sig

    sig { params(x: Integer, y: String).void }
    def initialize(x: 0, y: '')
      @x = x
      @y = y
    end

    # You don't _have_ to use `T.self_type` if there's only one relevant class.
    sig { params(x: Integer).returns(Data) }
    def setX(x)
      @x = x
      self
    end

    sig { params(y: String).returns(Data) }
    def setY(y)
      @y = y
      self
    end
  end

  # Tada!
  sig { params(data: Data).void }
  def chaining(data)
    data.setX(1).log.setY('a')
  end

  # If it's a class method (a.k.a. singleton method), use `T.attached_class`.
  # No warning here.  This one is stable!
  class Box
    extend T::Sig

    sig { params(contents: String, weight: Integer).void }
    def initialize(contents, weight)
      @contents = contents
      @weight = weight
    end

    sig { params(contents: String).returns(T.attached_class) }
    def self.pack(contents)
      new(contents, contents.chars.uniq.length)
    end
  end

  class CompanionCube < Box
    extend T::Sig

    sig { returns(String) }
    def pick_up
      "♥#{@contents}🤍"
    end
  end

  sig { returns(String) }
  def befriend
    CompanionCube.pack('').pick_up
  end

  # Sorbet has support for abstract classes and interfaces.  It can check that
  # all the concrete classes and implementations actually define the required
  # methods with compatible signatures.

  # Here's an abstract class:

  class WorkflowStep
    extend T::Sig

    # Bring in the inheritance helpers.
    extend T::Helpers

    # Mark this class as abstract.  This means it cannot be instantiated with
    # `.new`, but it can still be subclassed.
    abstract!

    sig { params(args: T::Array[String]).void }
    def run(args)
      pre_hook
      execute(args)
      post_hook
    end

    # This is an abstract method, which means it _must_ be implemented by
    # subclasses.  Add a signature with `abstract` to an empty method to tell
    # Sorbet about it.
    #
    # If this implementation of the method actually gets called at runtime, it
    # will raise `NotImplementedError`.
    sig { abstract.params(args: T::Array[String]).void }
    def execute(args); end

    # These methods _can_ be implemented by subclasses, but they're optional.

    sig { void }
    def pre_hook; end

    sig { void }
    def post_hook; end
  end

  class Configure < WorkflowStep
    extend T::Sig

    sig { void }
    def pre_hook
      puts 'Configuring...'
    end

    # To implement an abstract method, mark the signature with `override`.
    sig { override.params(args: T::Array[String]).void }
    def execute(args)
      # ...
    end
  end

  # And here's an interface:

  module Queue
    extend T::Sig

    # Bring in the inheritance helpers.
    extend T::Helpers

    # Mark this module as an interface.  This adds the following restrictions:
    # 1. All of its methods must be abstract.
    # 2. It cannot have any private or protected methods.
    interface!

    sig { abstract.params(num: Integer).void }
    def push(num); end

    sig { abstract.returns(T.nilable(Integer)) }
    def pop; end
  end

  class PriorityQueue
    extend T::Sig

    # Include the interface to tell Sorbet that this class implements it.
    # Sorbet doesn't support implicitly implemented interfaces (also known as
    # "duck typing").
    include Queue

    sig { void }
    def initialize
      @items = T.let([], T::Array[Integer])
    end

    # Implement the Queue interface's abstract methods.  Remember to use
    # `override`!

    sig { override.params(num: Integer).void }
    def push(num)
      @items << num
      @items.sort!
    end

    sig { override.returns(T.nilable(Integer)) }
    def pop
      @items.shift
    end
  end

  # If you use the `included` hook to get class methods from your modules,
  # you'll have to use `mixes_in_class_methods` to get them to type-check.

  module Mixin
    extend T::Helpers
    interface!

    module ClassMethods
      extend T::Sig

      sig { void }
      def whisk
        'fskfskfsk'
      end
    end

    mixes_in_class_methods(ClassMethods)
  end

  class EggBeater
    include Mixin
  end

  EggBeater.whisk # Meringue!
end

module EscapeHatches
  extend T::Sig

  # Ruby is a very dynamic language, and sometimes Sorbet can't infer the
  # properties you already know to be true.  Although there are ways to rewrite
  # your code so Sorbet can prove safety, you can also choose to "break out" of
  # Sorbet using these "escape hatches".

  # Once you start using `T.nilable`, Sorbet will start telling you _all_ the
  # places you're not handling nils.  Sometimes, you know a value can't be nil,
  # but it's not practical to fix the sigs so Sorbet can prove it.  In that
  # case, you can use `T.must`.
  sig { params(maybe_str: T.nilable(String)).returns(String) }
  def no_nils_here(maybe_str)
    # If maybe_str _is_ actually nil, this will error at runtime.
    str = T.must(maybe_str)
    str.downcase
  end

  # More generally, if you know that a value must be a specific type, you can
  # use `T.cast`.
  sig do
    params(
      str_or_ary: T.any(String, T::Array[String]),
      idx_or_range: T.any(Integer, T::Range[Integer]),
    ).returns(T::Array[String])
  end
  def slice2(str_or_ary, idx_or_range)
    # Let's say that, for some reason, we want individual characters from
    # strings or sub-arrays from arrays.  The other options are not allowed.
    if str_or_ary.is_a?(String)
      # Here, we know that `idx_or_range` must be a single index.  If it's not,
      # this will error at runtime.
      idx = T.cast(idx_or_range, Integer)
      [str_or_ary.chars.fetch(idx)]
    else
      # Here, we know that `idx_or_range` must be a range.  If it's not, this
      # will error at runtime.
      range = T.cast(idx_or_range, T::Range[Integer])
      str_or_ary.slice(range) || []
    end
  end

  # If you know that a method exists, but Sorbet doesn't, you can use
  # `T.unsafe` so Sorbet will let you call it.  Although we tend to think of
  # this as being an "unsafe method call", `T.unsafe` is called on the receiver
  # rather than the whole expression.
  sig { params(count: Integer).returns(Date) }
  def the_future(count)
    # Let's say you've defined some extra date helpers that Sorbet can't find.
    # So `2.decades` is effectively `(2*10).years` from ActiveSupport.
    Date.today + T.unsafe(count).decades
  end

  # If this is a method on the implicit `self`, you'll have to make that
  # explicit to use `T.unsafe`.
  sig { params(count: Integer).returns(Date) }
  def the_past(count)
    # Let's say that metaprogramming defines a `now` helper method for
    # `Time.new`.  Using it would look like this:
    #
    #     now - 1234
    T.unsafe(self).now - 1234
  end

  # There's a special type in Sorbet called `T.untyped`.  For any value of this
  # type, Sorbet will allow it to be used for any method argument and receive
  # any method call.

  sig { params(num: Integer, anything: T.untyped).returns(T.untyped) }
  def nothing_to_see_here(num, anything)
    anything.digits # Is it an Integer...
    anything.upcase # ... or a String?

    # Sorbet will not be able to infer anything about this return value because
    # it's untyped.
    BasicObject.new
  end

  def see_here
    # It's actually nil!  This will crash at runtime, but Sorbet allows it.
    nothing_to_see_here(1, nil)
  end

  # For a method without a sig, Sorbet infers the type of each argument and the
  # return value to be `T.untyped`.
end

# The following types are not officially documented but are still useful.  They
# may be experimental, deprecated, or not officially unsupported.

module ValueSet
  extend T::Sig

  # A common pattern in Ruby is to have a method accept one value from a set of
  # options.  Especially when starting out with Sorbet, it may not be practical
  # to refactor the code to use `T::Enum`.  In this case, you can use `T.enum`.
  #
  # Note: Sorbet can't check this statically becuase it doesn't track the
  # values themselves.
  sig do
    params(
      data: T::Array[Numeric],
      shape: T.enum([:circle, :square, :triangle])
    ).void
  end
  def plot_points(data, shape: :circle)
    data.each_with_index do |y, x|
      Kernel.puts "#{x}: #{y}"
    end
  end
end

module Generics
  extend T::Sig

  # Generics are useful when you have a class whose method types change based
  # on the data it contains or a method whose method type changes based on what
  # its arguments are.

  # A generic method uses `type_parameters` to declare type variables and
  # `T.type_parameter` to refer back to them.
  sig do
    type_parameters(:element)
      .params(
        element: T.type_parameter(:element),
        count: Integer,
      ).returns(T::Array[T.type_parameter(:element)])
  end
  def repeat_value(element, count)
    count.times.each_with_object([]) do |elt, ary|
      ary << elt
    end
  end

  sig do
    type_parameters(:element)
      .params(
        count: Integer,
        block: T.proc.returns(T.type_parameter(:element)),
      ).returns(T::Array[T.type_parameter(:element)])
  end
  def repeat_cached(count, &block)
    elt = block.call
    ary = []
    count.times do
      ary << elt
    end
    ary
  end

  # A generic class uses `T::Generic.type_member` to define type variables that
  # can be like regular type names.
  class BidirectionalHash
    extend T::Sig
    extend T::Generic

    Left = type_member
    Right = type_member

    sig { void }
    def initialize
      @left_hash = T.let({}, T::Hash[Left, Right])
      @right_hash = T.let({}, T::Hash[Right, Left])
    end

    # Implement just enough to make the methods below work.

    sig { params(lkey: Left).returns(T::Boolean) }
    def lhas?(lkey)
      @left_hash.has_key?(lkey)
    end

    sig { params(rkey: Right).returns(T.nilable(Left)) }
    def rget(rkey)
      @right_hash[rkey]
    end
  end

  # To specialize a generic type, use brackets.
  sig do
    params(
      options: BidirectionalHash[Symbol, Integer],
      choice: T.any(Symbol, Integer),
    ).returns(T.nilable(String))
  end
  def lookup(options, choice)
    case choice
    when Symbol
      options.lhas?(choice) ? choice.to_s : nil
    when Integer
      options.rget(choice).to_s
    else
      T.absurd(choice)
    end
  end

  # To specialize through inheritance, re-declare the `type_member` with `fixed`.
  class Options < BidirectionalHash
    Left = type_member(fixed: Symbol)
    Right = type_member(fixed: Integer)
  end

  sig do
    params(
      options: Options,
      choice: T.any(Symbol, Integer),
    ).returns(T.nilable(String))
  end
  def lookup2(options, choice)
    lookup(options, choice)
  end

  # There are other variance annotations you can add to `type_member`, but
  # they're rarely used.
end